Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 114
Filter
1.
Braz. j. infect. dis ; 23(3): 151-159, May-June 2019. tab
Article in English | LILACS | ID: biblio-1019551

ABSTRACT

ABSTRACT Background: HIV infection harms adaptive cellular immunity mechanisms. Long-term virological control by combined antiretroviral therapy (cART) reduces the risk of mycobacterial infections. Thus, we aimed to study cellular responses to mycobacterial antigens in 20 HIV-infected adolescents with at least one year of virological control (HIV-RNA <40 copies/mL) and 20 healthy adolescents. Methods: We evaluated CD8 and γδ T-cell degranulation by measurement of CD107a membrane expression after stimulation with lysates from BCG (10 µg/mL) and H37RA Mycobacterium tuberculosis (Mtb, 10 µg/mL). Immune activation and antigen-presenting ability were also assessed by determination of HLA-DR, CD80, and CD86 markers. Results: TCR γδ T-cell CD107a expression was similar between groups in response to mycobacterial antigens, and lower in the HIV-infected group in response to mitogen. Higher baseline HLA-DR expression and lower mycobacterial-stimulated expression was found within the HIV-infected group. Conclusions: Similar degranulation in stimulated CD8+ and TCR γδ T-cells from HIV-infected adolescents, when compared to healthy controls suggests long-term immunological preservation with immune reconstitution under successful cART. However, differences in HLA-DR expression may represent ongoing inflammation and lower specific responses in HIV-infected youth. These features may be relevant in the context of the precocity and severity of vertically acquired HIV infection.


Subject(s)
Humans , Male , Female , Young Adult , Receptors, Antigen, T-Cell, alpha-beta/immunology , AIDS-Related Opportunistic Infections/immunology , CD8-Positive T-Lymphocytes/immunology , Anti-HIV Agents/therapeutic use , Mycobacterium tuberculosis/immunology , Antigens, Bacterial/immunology , Tuberculosis/immunology , Biomarkers/blood , Cross-Sectional Studies , Prospective Studies , Immunophenotyping , Antigen Presentation/immunology , Infectious Disease Transmission, Vertical , Antigens, Bacterial/drug effects
2.
Cancer Research and Treatment ; : 80-89, 2019.
Article in English | WPRIM | ID: wpr-719716

ABSTRACT

PURPOSE: In the presence of interferon, proteasome subunits are replaced by their inducible counterparts to form an immunoproteasome (IP) plays a key role in generation of antigenic peptides presented by MHC class I molecules, leading to elicitation of a T cell‒mediated immune response. Although the roles of IP in other cancers, and inflammatory diseases have been extensively studied, its significance in breast cancer is unclear. MATERIALS AND METHODS: We investigated the expression of LMP7, an IP subunit, and its relationship with immune system components in two breast cancer cohorts. RESULTS: In 668 consecutive breast cancer cohort, 40% of tumors showed high level of LMP7 expression, and tumors with high expression of LMP7 had more tumor-infiltrating lymphocytes (TILs) in each subtype of breast cancer. In another cohort of 681 triple-negative breast cancer patients cohort, the expression of LMP7 in tumor cells was significantly correlated with the amount of TILs and the expression of interferon-associated molecules (MxA [p < 0.001] and PKR [p < 0.001]), endoplasmic reticulum stress-associated molecules (PERK [p=0.012], p-eIF2a [p=0.001], and XBP1 [p < 0.001]), and damage-associated molecular patterns (HMGN1 [p < 0.001] and HMGB1 [p < 0.001]). Patients with higher LMP7 expression had better disease-free survival outcomes than those with no or low expression in the positive lymph node metastasis group (p=0.041). CONCLUSION: Close association between the TIL levels and LMP7 expression in breast cancer indicates that better antigen presentation through greater LMP7 expression might be associated with more TILs.


Subject(s)
Humans , Antigen Presentation , Breast Neoplasms , Breast , Cohort Studies , Disease-Free Survival , Endoplasmic Reticulum , HLA Antigens , HMGB1 Protein , Immune System , Interferons , Lymph Nodes , Lymphocytes, Tumor-Infiltrating , Neoplasm Metastasis , Peptides , Proteasome Endopeptidase Complex , Triple Negative Breast Neoplasms
3.
Immune Network ; : e15-2019.
Article in English | WPRIM | ID: wpr-764016

ABSTRACT

To this date, the criteria to distinguish peritoneal macrophages and dendritic cells (DCs) are not clear. Here we delineate the subsets of myeloid mononuclear cells in the mouse peritoneal cavity. Considering phenotypical, functional, and ontogenic features, peritoneal myeloid mononuclear cells are divided into 5 subsets: large peritoneal macrophages (LPMs), small peritoneal macrophages (SPMs), DCs, and 2 MHCII⁺CD11c⁺CD115⁺ subpopulations (i.e., MHCII⁺CD11c⁺CD115⁺CD14⁻CD206⁻ and MHCII⁺CD11c⁺CD115⁺CD14⁺CD206⁺). Among them, 2 subsets of competent Ag presenting cells are demonstrated with distinct functional characteristics, one being DCs and the other being MHCII⁺CD11c⁺CD115⁺CD14⁻CD206⁻ cells. DCs are able to promote fully activated T cells and superior in expanding cytokine producing inflammatory T cells, whereas MHCII⁺CD11c⁺CD115⁺CD14⁻CD206⁻ cells generate partially activated T cells and possess a greater ability to induce Treg under TGF-β and retinoic acid conditions. While the development of DCs and MHCII⁺CD11c⁺CD115⁺CD14⁻CD206⁻ cells are responsive to the treatment of FLT3 ligand and GM-CSF, the number of LPMs, SPMs, and MHCII⁺CD11c⁺CD115⁺CD14⁺CD206⁺ cells are only influenced by the injection of GM-CSF. In addition, the analysis of gene expression profiles among MHCII⁺ peritoneal myeloid mononuclear cells reveals that MHCII⁺CD11c⁺CD115⁺CD14⁺CD206⁺ cells share high similarity with SPMs, whereas MHCII⁺CD11c⁺CD115⁺CD14⁻CD206⁻ cells are related to peritoneal DC2s. Collectively, our study identifies 2 distinct subpopulations of MHCII⁺CD11c⁺CD115⁺ cells, 1) MHCII⁺CD11c⁺CD115⁺CD14⁻CD206⁻ cells closely related to peritoneal DC2s and 2) MHCII⁺CD11c⁺CD115⁺CD14⁺CD206⁺ cells to SPMs.


Subject(s)
Animals , Mice , Antigen Presentation , Dendritic Cells , Granulocyte-Macrophage Colony-Stimulating Factor , Macrophages , Macrophages, Peritoneal , Peritoneal Cavity , T-Lymphocytes , Transcriptome , Tretinoin
4.
Biomolecules & Therapeutics ; : 302-310, 2019.
Article in English | WPRIM | ID: wpr-763014

ABSTRACT

Melanoma cells have been shown to respond to BRAF inhibitors; however, intrinsic and acquired resistance limits their clinical application. In this study, we performed RNA-Seq analysis with BRAF inhibitor-sensitive (A375P) and


Subject(s)
Antigen Presentation , Biological Phenomena , Cell Adhesion , Cell Line , Cell Movement , Classification , Collagen , Drug Resistance , Extracellular Matrix , Gene Expression , Gene Ontology , Melanoma , Osteoblasts , Proto-Oncogene Proteins c-akt
5.
Medicina (B.Aires) ; 76(5): 307-314, Oct. 2016. ilus
Article in Spanish | LILACS | ID: biblio-841598

ABSTRACT

En los últimos años la inmunoterapia ha revolucionado el tratamiento de pacientes con cáncer avanzado. El mayor conocimiento de la biología tumoral y de la inmunología ha permitido desarrollar tratamientos racionales manipulando el sistema inmunitario con importante impacto clínico. Entre otras estrategias de inmunoterapia contra el cáncer se ha explorado el uso de vacunas terapéuticas basadas en células dendríticas (CD). Las CD son células de origen hematopoyético, que expresan constitutivamente moléculas presentadoras de antígeno, y son funcionalmente las inductoras más potentes de la activación y proliferación de linfocitos T a los que presentan antígenos. Los linfocitos T CD8+ proliferan y adquieren capacidad citotóxica cuando reconocen su antígeno específico presentado en la superficie de CD, aunque solo algunos tipos de CD pueden presentar antígenos internalizados desde el exterior celular a precursores de linfocitos T citotóxicos (a esta función se la llama presentación cruzada). Explotar la inducción de una respuesta inmunitaria adaptativa eficaz se considera una buena opción por su especificidad y prolongada duración de la respuesta. Las CD, gracias a su particular capacidad de presentación antigénica y de estimulación linfocitaria, son capaces de revertir la respuesta inmunitaria antitumoral deficiente que presentan algunos pacientes con cáncer. Las CD se pueden obtener a partir de distintas fuentes, empleando diversos protocolos para generar diferenciación y maduración, y se administran por diversas vías como son subcutánea, intravenosa o intranodal. La gran variedad de protocolos en los que se aplican las CD explica los resultados clínicos tan heterogéneos que se han comunicado hasta la fecha.


In recent years immunotherapy has revolutionized the treatment of patients with advanced cancer. The increased knowledge in the tumor immune-biology has allowed developing rational treatments by manipulation of the immune system with significant clinical impact. This rapid development has significantly changed the prognosis of many tumors without treatment options up to date. Other strategies have explored the use of therapeutic vaccines based on dendritic cells (DC) by inducing antitumor immunity. DC are cells of hematopoietic origin, constitutively expressing molecules capable to present antigens, that are functionally the most potent inducers of the activation and proliferation of antigen specific T lymphocytes. The CD8+ T cells proliferate and acquire cytotoxic capacity after recognizing their specific antigen presented on the surface of DC, although only some types of DC can present antigens internalized from outside the cell to precursors of cytotoxic T lymphocytes (this function is called cross-presentation) requiring translocation mechanisms of complex antigens. The induction of an effective adaptive immune response is considered a good option given its specificity, and prolonged duration of response. The DC, thanks to its particular ability of antigen presentation and lymphocyte stimulation, are able to reverse the poor antitumor immune response experienced by patients with cancer. The DC can be obtained from various sources, using different protocols to generate differentiation and maturation, and are administered by various routes such as subcutaneous, intravenous or intranodal. The wide variety of protocols resulted in heterogeneous clinical responses.


Subject(s)
Humans , Dendritic Cells/immunology , Vaccination/methods , Cancer Vaccines/immunology , Neoplasms/therapy , T-Lymphocytes/immunology , Antigen Presentation/immunology , Antigens, Neoplasm/immunology , Neoplasms/immunology
6.
Immune Network ; : 33-43, 2016.
Article in English | WPRIM | ID: wpr-211460

ABSTRACT

Cell-penetrating peptides (CPPs) are short amino acids that have been widely used to deliver macromolecules such as proteins, peptides, DNA, or RNA, to control cellular behavior for therapeutic purposes. CPPs have been used to treat immunological diseases through the delivery of immune modulatory molecules in vivo. Their intracellular delivery efficiency is highly synergistic with the cellular characteristics of the dendritic cells (DCs), which actively uptake foreign antigens. DC-based vaccines are primarily generated by pulsing DCs ex vivo with various immunomodulatory antigens. CPP conjugation to antigens would increase DC uptake as well as antigen processing and presentation on both MHC class II and MHC class I molecules, leading to antigen specific CD4+ and CD8+ T cell responses. CPP-antigen based DC vaccination is considered a promising tool for cancer immunotherapy due to the enhanced CTL response. In this review, we discuss the various applications of CPPs in immune modulation and DC vaccination, and highlight the advantages and limitations of the current CPP-based DC vaccination.


Subject(s)
Amino Acids , Antigen Presentation , Cell-Penetrating Peptides , Dendritic Cells , DNA , Immune System Diseases , Immunotherapy , Peptides , RNA , Vaccination , Vaccines
7.
Chinese Medical Journal ; (24): 1053-1058, 2016.
Article in English | WPRIM | ID: wpr-290126

ABSTRACT

<p><b>BACKGROUND</b>Proteasome subunits (PSMB) and transporter associated with antigen processing (TAP) loci are located in the human leukocyte antigen (HLA) Class II region play important roles in immune response and protein degradation in neurodegenerative diseases. This study aimed to explore the association between single nucleotide polymorphisms (SNPs) of PSMB and TAP and Parkinson's disease (PD).</p><p><b>METHODS</b>A case-control study was conducted by genotyping SNPs in PSMB8, PSMB9, TAP1, and TAP2 genes in the Chinese population. Subjects included 542 sporadic patients with PD and 674 healthy controls. Nine identified SNPs in PSMB8, PSMB9, TAP1, and TAP2 were genotyped through SNaPshot testing.</p><p><b>RESULTS</b>The stratified analysis of rs17587 was specially performed on gender. Data revealed that female patients carry a higher frequency of rs17587-G/G versus (A/A + G/A) compared with controls. But there was no significant difference with respect to the genotypic frequencies of the SNPs in PSMB8, TAP1, and TAP2 loci in PD patients.</p><p><b>CONCLUSION</b>Chinese females carrying the rs17587-G/G genotype in PSMB9 may increase a higher risk for PD, but no linkage was found between other SNPs in HLA Class II region and PD.</p>


Subject(s)
Adult , Aged , Female , Humans , Male , Middle Aged , ATP Binding Cassette Transporter, Subfamily B, Member 2 , Genetics , ATP Binding Cassette Transporter, Subfamily B, Member 3 , Genetics , Antigen Presentation , Case-Control Studies , Cysteine Endopeptidases , Genetics , Parkinson Disease , Genetics , Allergy and Immunology , Polymorphism, Single Nucleotide , Proteasome Endopeptidase Complex , Genetics
8.
Journal of Rheumatic Diseases ; : 202-211, 2016.
Article in English | WPRIM | ID: wpr-98412

ABSTRACT

Autophagy is a principle catabolic process mediated by lysosomes in eukaryotic cells. This is an intracellular homeostatic mechanism crucial for degradation in acidic lysosomal compartments of waste components from the cytoplasm. Autophagy research was initially focused on its degradation mechanism, but focus is now shifting to its effects on immunity. It contributes to detection and removal of pathogens as well as regulation of inflammasomes and neutrophil extracellular traps. Moreover, it is pivotal in antigen presentation and immune cell maturation, survival and homeostasis. The importance of autophagic pathways in normal and dysregulated immunity has become increasingly recognized in the past several years. Dysregulation of the autophagic pathway is implicated in the pathogenesis of several rheumatic diseases. In this review, we summarize the immunological function of autophagy in innate and adaptive immunity, and the functions of autophagy in the pathogenesis of rheumatic diseases.


Subject(s)
Adaptive Immunity , Antigen Presentation , Arthritis, Rheumatoid , Autophagy , Cytoplasm , Eukaryotic Cells , Extracellular Traps , Homeostasis , Inflammasomes , Lupus Erythematosus, Systemic , Lysosomes , Rheumatic Diseases
9.
Immune Network ; : 233-241, 2016.
Article in English | WPRIM | ID: wpr-97831

ABSTRACT

DCs, like the sensory neurons, express vanilloid receptor 1 (VR1). Here we demonstrate that the VR1 agonists, capsaicin (CP) and resiniferatoxin (RTX), enhance antiviral CTL responses by increasing MHC class I-restricted viral antigen presentation in dendritic cells (DCs). Bone marrow-derived DCs (BM-DCs) were infected with a recombinant vaccinia virus (VV) expressing OVA (VV-OVA), and then treated with CP or RTX. Both CP and RTX increased MHC class I-restricted presentation of virus-encoded endogenous OVA in BM-DCs. Oral administration of CP or RTX significantly increased MHC class I-restricted OVA presentation by splenic and lymph node DCs in VV-OVA-infected mice, as assessed by directly measuring OVA peptide SIINFEKL-Kb complexes on the cell surface and by performing functional assays using OVA-specific CD8 T cells. Accordingly, oral administration of CP or RTX elicited potent OVA-specific CTL activity in VV-OVA-infected mice. The results from this study demonstrate that VR1 agonists enhance anti-viral CTL responses, as well as a neuro-immune connection in anti-viral immune responses.


Subject(s)
Animals , Mice , Administration, Oral , Antigen Presentation , Capsaicin , Dendritic Cells , Lymph Nodes , Ovum , Sensory Receptor Cells , T-Lymphocytes , Vaccinia virus
10.
Rev. méd. Chile ; 143(3): 297-303, mar. 2015. graf, tab
Article in Spanish | LILACS | ID: lil-745626

ABSTRACT

Background: A secular trend towards a younger age of puberty onset has been reported in Chilean girls. Aim: To evaluate the age of onset of puberty and prevalence of early puberty in Chilean boys. Material and Methods: A pediatric endocrinologist examined 319 children attending schools in central Santiago. Pubertal development was assessed by testicular volume (TV) and genital inspection (GI) using Tanner graduation. Precocious and early puberty development was diagnosed if TV ≥ 4 ml or GI > stage 2 occurred in boys younger than 9 years and at 9-10 years of age, respectively. Results: Pubertal onset occurred at 10.2 ± 1.5 years according to TV and at 11.1 ± 1.6 years according to GI (p < 0.01). Before the age of nine, 15.2% of children had a VT ≥ 4 ml, 3% had genital changes in GI and only 3% had both changes simultaneously. Early puberty was observed in 23.8% of children according to TV and 9.5% according to GI. However, no child of less than 11 years old had a TV ≥ 4 ml, genital changes and pubic hair simultaneously. Late pubertal stages occurred at the same age according to both criteria used. Body mass index z score was not associated with the age of pubertal onset. Conclusions: Testicular enlargement occurs one year earlier than changes in genitalia according to inspection. Testicular growth, but not late stages of puberty, are occurring one year earlier than previously reported in Chile 10 years ago.


Subject(s)
Adult , Aged , Female , Humans , Male , Middle Aged , Antigen Presentation , /immunology , /immunology , Cell Differentiation/immunology , Cross-Priming , Gram-Negative Bacteria/immunology , Gram-Positive Bacteria/immunology , Adaptive Immunity , /pathology , /pathology , Immunity, Innate , Neutrophils , Receptors, Antigen, T-Cell, gamma-delta/immunology
11.
Einstein (Säo Paulo) ; 13(1): 153-156, Jan-Mar/2015.
Article in English | LILACS | ID: lil-745865

ABSTRACT

The setting for the occurrence of an immune response is that of the need to cope with a vast array of different antigens from both pathogenic and non-pathogenic sources. When the first barriers against infection and innate defense fail, adaptive immune response enters the stage for recognition of the antigens by means of extremely variable molecules, namely immunoglobulins and T-cell receptors. The latter recognize the antigen exposed on cell surfaces, in the form of peptides presented by the HLA molecule. The first part of this review details the central role played by these molecules, establishing the close connection existing between their structure and their antigen presenting function.


O cenário no qual ocorre a resposta imune é o da necessidade de fazer frente a uma vasta gama de antígenos diferentes, de fontes patogênicas e não patogênicas. Quando as primeiras barreiras contra infecção e a defesa inata falham, a resposta imune adaptativa entra em campo, para efetuar o reconhecimento dos antígenos, utilizando, para esse fim, moléculas extremamente variáveis, que são as imunoglobulinas e os receptores de células-T. Estes últimos reconhecem o antígeno, exposto na superfície das células como peptídeo apresentado pelas moléculas HLA. A primeira parte desta revisão detalha o papel central dessas moléculas, estabelecendo a conexão que existe entre a estrutura e a função de apresentação de antígenos.


Subject(s)
Humans , Antigen Presentation/immunology , HLA Antigens/immunology , Major Histocompatibility Complex/immunology , Alleles , Antigen Presentation/genetics , HLA Antigens/genetics , Major Histocompatibility Complex/genetics
12.
Einstein (Säo Paulo) ; 13(1): 157-162, Jan-Mar/2015.
Article in English | LILACS | ID: lil-745874

ABSTRACT

The second part of this review deals with the molecules and processes involved in the processing and presentation of the antigenic fragments to the T-cell receptor. Though the nature of the antigens presented varies, the most significant class of antigens is proteins, processed within the cell to be then recognized in the form of peptides, a mechanism that confers an extraordinary degree of precision to this mode of immune response. The efficiency and accuracy of this system is also the result of the myriad of mechanisms involved in the processing of proteins and production of peptides, in addition to the capture and recycling of alternative sources aiming to generate further diversity in the presentation to T-cells.


A segunda parte desta revisão trata das moléculas e processos envolvidos no processamento e apresentação dos fragmentos antigênicos ao receptor de célula-T. Apesar de variar a natureza do antígeno apresentado, a classe mais significativa é a das proteínas, as quais são processadas dentro da célula para enfim serem reconhecidas na forma de peptídeos, o que confere um grau extraordinário de precisão a essa forma de resposta imune. A eficiência e a precisão desse sistema se devem também à miríade de mecanismos envolvidos no processamento de proteínas e produção de peptídeos, além da captura e reciclagem de fontes alternativas de antígenos com o objetivo de gerar ainda maior diversidade na apresentação à célula-T.


Subject(s)
Humans , Antigen Presentation/immunology , Cell-Penetrating Peptides/metabolism , HLA Antigens/metabolism , Major Histocompatibility Complex/immunology , Cell-Penetrating Peptides/immunology , HLA Antigens/immunology
13.
Clinical and Experimental Vaccine Research ; : 23-45, 2015.
Article in English | WPRIM | ID: wpr-203153

ABSTRACT

Adjuvants improve the adaptive immune response to a vaccine antigen by modulating innate immunity or facilitating transport and presentation. The selection of an appropriate adjuvant has become vital as new vaccines trend toward narrower composition, expanded application, and improved safety. Functionally, adjuvants act directly or indirectly on antigen presenting cells (APCs) including dendritic cells (DCs) and are perceived as having molecular patterns associated either with pathogen invasion or endogenous cell damage (known as pathogen associated molecular patterns [PAMPs] and damage associated molecular patterns [DAMPs]), thereby initiating sensing and response pathways. PAMP-type adjuvants are ligands for toll-like receptors (TLRs) and can directly affect DCs to alter the strength, potency, speed, duration, bias, breadth, and scope of adaptive immunity. DAMP-type adjuvants signal via proinflammatory pathways and promote immune cell infiltration, antigen presentation, and effector cell maturation. This class of adjuvants includes mineral salts, oil emulsions, nanoparticles, and polyelectrolytes and comprises colloids and molecular assemblies exhibiting complex, heterogeneous structures. Today innovation in adjuvant technology is driven by rapidly expanding knowledge in immunology, cross-fertilization from other areas including systems biology and materials sciences, and regulatory requirements for quality, safety, efficacy and understanding as part of the vaccine product. Standardizations will aid efforts to better define and compare the structure, function and safety of adjuvants. This article briefly surveys the genesis of adjuvant technology and then re-examines polyionic macromolecules and polyelectrolyte materials, adjuvants currently not known to employ TLR. Specific updates are provided for aluminum-based formulations and polyelectrolytes as examples of improvements to the oldest and emerging classes of vaccine adjuvants in use.


Subject(s)
Adaptive Immunity , Adjuvants, Immunologic , Allergy and Immunology , Aluminum Hydroxide , Aluminum , Antigen Presentation , Antigen-Presenting Cells , Bias , Chitosan , Colloids , Dendritic Cells , Emulsions , Immunity, Innate , Ligands , Nanoparticles , Polymers , Receptors, Pattern Recognition , Salts , Systems Biology , Toll-Like Receptors , Vaccines
14.
Journal of Biomedical Research ; : 47-52, 2015.
Article in English | WPRIM | ID: wpr-119557

ABSTRACT

Macrophages play an important role in both the innate and adaptive immune responses. These include phagocytosis, killing of microorganisms, antigen presentation, and induction of immune cytokines and antimicrobial genes. Macrophage activity is reported to be controlled by diverse exogenous antigenic or endogenous metabolic molecules, and the underlying mechanisms are well documented in human and mouse macrophage cells. Bacterial lipopolysaccharide (LPS) is known to be one of the most potent stimuli activating macrophages through the toll like receptor 4 (TLR4) signaling pathway. There are other antigenic molecules, such as muramyl dipeptide (MDP) and outer membrane protein A (OmpA), that are also known to activate immune cells. On the other hand, short chain fatty acids (SCFAs) such as acetate and butyrate are produced by gut microbiota and control host energy metabolism and signal transduction through GPR receptors. However, there are few studies demonstrating the effects of these molecules in macrophages from domestic animals, including domestic pigs. In this study, we attempted to characterize gene expression regulation in porcine macrophages (PoM2, Pig Monocytes clone 2) following treatment with LPS, MDP, OmpA, and two short chain fatty acids using porcine genome microarray and RT-PCR techniques. A number of novel porcine genes, including anti-microbial peptides and others, appeared to be regulated at the transcriptional level. Our study reports novel biomarkers such as SLC37A2, TMEN184C, and LEAP2 that are involved in the porcine immune response to bacterial antigen LPS and two short chain fatty acids.


Subject(s)
Animals , Humans , Mice , Acetylmuramyl-Alanyl-Isoglutamine , Animals, Domestic , Antigen Presentation , Biomarkers , Butyrates , Clone Cells , Cytokines , Energy Metabolism , Fatty Acids , Gene Expression Regulation , Genome , Hand , Homicide , Macrophages , Membrane Proteins , Microbiota , Monocytes , Oligonucleotide Array Sequence Analysis , Peptides , Phagocytosis , Signal Transduction , Sus scrofa , Toll-Like Receptor 4
15.
Experimental & Molecular Medicine ; : e140-2015.
Article in English | WPRIM | ID: wpr-42469

ABSTRACT

In allogeneic transplantation, including the B6 anti-BALB.B settings, H60 and H4 are two representative dominant minor histocompatibility antigens that induce strong CD8 T-cell responses. With different distribution patterns, H60 expression is restricted to hematopoietic cells, whereas H4 is ubiquitously expressed. H60-specific CD8 T-cell response has been known to be dominant in most cases of B6 anti-BALB.B allo-responses, except in the case of skin transplantation. To understand the mechanism underlying the subdominance of H60 during allogeneic skin transplantation, we investigated the dynamics of the H60-specific CD8 T cells in B6 mice transplanted with allogeneic BALB.B tail skin. Unexpectedly, longitudinal bioluminescence imaging and flow cytometric analyses revealed that H60-specific CD8 T cells were not always subdominant to H4-specific cells but instead showed a brief dominance before the H4 response became predominant. H60-specific CD8 T cells could expand in the draining lymph node and migrate to the BALB.B allografts, indicating their active participation in the anti-BALB.B allo-response. Enhancing the frequencies of H60-reactive CD8 T cells prior to skin transplantation reversed the immune hierarchy between H60 and H4. Additionally, H60 became predominant when antigen presentation was limited to the direct pathway. However, when antigen presentation was restricted to the indirect pathway, the expansion of H60-specific CD8 T cells was limited, whereas H4-specific CD8 T cells expanded significantly, suggesting that the temporary immunodominance and eventual subdominance of H60 could be due to their reliance on the direct antigen presentation pathway. These results enhance our understanding of the immunodominance phenomenon following allogeneic tissue transplantation.


Subject(s)
Animals , Female , Mice , Antigen Presentation , Antigen-Presenting Cells/immunology , CD8-Positive T-Lymphocytes/immunology , Epitopes, T-Lymphocyte/immunology , Graft Rejection/immunology , Interferon-gamma , Lymphocyte Activation/immunology , Lymphocyte Count , Minor Histocompatibility Antigens/immunology , Skin Transplantation , Transplantation, Homologous
16.
Clinical and Experimental Vaccine Research ; : 1-10, 2015.
Article in English | WPRIM | ID: wpr-119877

ABSTRACT

Advantages of DNA vaccination against infectious diseases over more classical immunization methods include the possibilities for rapid manufacture, fast adaptation to newly emerging pathogens and high stability at ambient temperatures. In addition, upon DNA immunization the antigen is produced by the cells of the vaccinated individual, which leads to activation of both cellular and humoral immune responses due to antigen presentation via MHC I and MHC II molecules. However, so far DNA vaccines have shown most efficient immunogenicity mainly in small rodent models, whereas in larger animals including humans there is still the need to improve effectiveness. This is mostly due to inefficient delivery of the DNA plasmid into cells and nuclei. Here, we discuss technologies used to overcome this problem, including physical means such as in vivo electroporation and co-administration of adjuvants. Several of these methods have already entered clinical testing in humans.


Subject(s)
Animals , Humans , Adjuvants, Immunologic , Antigen Presentation , Communicable Diseases , DNA , Electroporation , Gene Transfer Techniques , Immunity, Humoral , Immunization , Plasmids , Rodentia , Vaccination , Vaccines, DNA
17.
Immune Network ; : 328-332, 2014.
Article in English | WPRIM | ID: wpr-116962

ABSTRACT

Dexamethasone (Dex) was shown to inhibit the differentiation, maturation, and antigen-presenting function of dendritic cells (DC) when added during DC generation or maturation stages. Here, we examined the direct effects of Dex on MHC-restricted antigen processing. Macrophages were incubated with microencapsulated ovalbumin (OVA) in the presence of different concentrations of Dex for 2 h, and the efficacy of OVA peptide presentation was evaluated using OVA-specific CD8 and CD4 T cells. Dex inhibited both class I- and class II-restricted presentation of OVA to T cells; this inhibitory effect on antigen presentation was much more potent in immature macrophages than in mature macrophages. The presentation of the exogenously added OVA peptide SIINFEKL was not blocked by Dex. In addition, short-term treatment of macrophages with Dex had no discernible effects on the phagocytic activity, total expression levels of MHC molecules or co-stimulatory molecules. These results demonstrate that Dex inhibits intracellular processing events of phagocytosed antigens in macrophages.


Subject(s)
Antigen Presentation , Dendritic Cells , Dexamethasone , Macrophages , Ovalbumin , Ovum , T-Lymphocytes
18.
Clinical and Experimental Vaccine Research ; : 227-234, 2014.
Article in English | WPRIM | ID: wpr-108900

ABSTRACT

PURPOSE: Protein cages are promising nanoplatform candidates for efficient delivery systems due to their homogenous size and structure with high biocompatibility and biodegradability. In this study, we investigate the potential of lumazine synthase protein cage as an antigen delivery system to dendritic cells (DCs), which induce antigen-specific T cell proliferation. MATERIALS AND METHODS: Ovalbumin (OVA) peptides OT-1 (SIINFEKL) and OT-2 (ISQAVHAAHAEINEAGR) were genetically inserted to lumazine synthase and each protein cage was over-expressed in Escherichia coli as a soluble protein. The efficiency of antigen delivery and the resulting antigen-specific T cell proliferation by DCs was examined in vitro as well as in vivo. RESULTS: We successfully generated and characterized OVA peptides carrying lumazine synthase protein cages. The OT-1 and OT-2 peptides carried by lumazine synthases were efficiently delivered and processed by DCs in vitro as well as in vivo, and induced proliferation of OT-1-specific CD8+T cells and OT-2-specific CD4+T cells. CONCLUSION: Our data demonstrate the potential of lumazine synthase protein cage being used as a novel antigen delivery system for DC-based vaccine development in future clinical applications.


Subject(s)
Antigen Presentation , Cell Proliferation , Dendritic Cells , Escherichia coli , Nanoparticles , Ovalbumin , Ovum , Peptides , Vaccines
19.
Immune Network ; : 128-137, 2014.
Article in English | WPRIM | ID: wpr-120551

ABSTRACT

Respiratory viruses can induce acute respiratory disease. Clinical symptoms and manifestations are dependent on interactions between the virus and host immune system. Dendritic cells (DCs), along with alveolar macrophages, constitute the first line of sentinel cells in the innate immune response against respiratory viral infection. DCs play an essential role in regulating the immune response by bridging innate and adaptive immunity. In the steady state, lung DCs can be subdivided into CD103+ conventional DCs (cDCs), CD11b+ cDCs, and plasmacytoid DCs (pDCs). In the inflammatory state, like a respiratory viral infection, monocyte-derived DCs (moDCs) are recruited to the lung. In inflammatory lung, discrimination between moDCs and CD11b+ DCs in the inflamed lung has been a critical challenge in understanding their role in the antiviral response. In particular, CD103+ cDCs migrate from the intraepithelial base to the draining mediastinal lymph nodes to primarily induce the CD8+ T cell response against the invading virus. Lymphoid CD8alpha+ cDCs, which have a developmental relationship with CD103+ cDCs, also play an important role in viral antigen presentation. Moreover, pDCs have been reported to promote an antiviral response by inducing type I interferon production rather than adaptive immunity. However, the role of these cells in respiratory infections remains unclear. These different DC subsets have functional specialization against respiratory viral infection. Under certain viral infection, contextually controlling the balance of these specialized DC subsets is important for an effective immune response and maintenance of homeostasis.


Subject(s)
Adaptive Immunity , Antigen Presentation , Dendritic Cells , Discrimination, Psychological , Homeostasis , Immune System , Immunity, Innate , Influenza, Human , Interferon Type I , Lung , Lymph Nodes , Macrophages, Alveolar , Respiratory Syncytial Viruses , Respiratory Tract Infections
20.
Mem. Inst. Oswaldo Cruz ; 108(6): 691-698, set. 2013. graf
Article in English | LILACS | ID: lil-685486

ABSTRACT

Acute infection with Trypanosoma cruzi results in intense myocarditis, which progresses to a chronic, asymptomatic indeterminate form. The evolution toward this chronic cardiac form occurs in approximately 30% of all cases of T. cruzi infection. Suppression of delayed type hypersensitivity (DTH) has been proposed as a potential explanation of the indeterminate form. We investigated the effect of cyclophosphamide (CYCL) treatment on the regulatory mechanism of DTH and the participation of heart interstitial dendritic cells (IDCs) in this process using BALB/c mice chronically infected with T. cruzi. One group was treated with CYCL (20 mg/kg body weight) for one month. A DTH skin test was performed by intradermal injection of T. cruzi antigen (3 mg/mL) in the hind-footpad and measured the skin thickness after 24 h, 48 h and 72 h. The skin test revealed increased thickness in antigen-injected footpads, which was more evident in the mice treated with CYCL than in those mice that did not receive treatment. The thickened regions were characterised by perivascular infiltrates and areas of necrosis. Intense lesions of the myocardium were present in three/16 cases and included large areas of necrosis. Morphometric evaluation of lymphocytes showed a predominance of TCD8 cells. Heart IDCs were immunolabelled with specific antibodies (CD11b and CD11c) and T. cruzi antigens were detected using a specific anti-T. cruzi antibody. Identification of T. cruzi antigens, sequestered in these cells using specific anti-T. cruzi antibodies was done, showing a significant increase in the number of these cells in treated mice. These results indicate that IDCs participate in the regulatory mechanisms of DTH response to T. cruzi infection.


Subject(s)
Animals , Chagas Cardiomyopathy/drug therapy , Cyclophosphamide/pharmacology , Dendritic Cells/immunology , Hypersensitivity, Delayed/drug therapy , Immunosuppressive Agents/pharmacology , Trypanosoma cruzi , Antigen Presentation/immunology , Antigens, Protozoan/immunology , Chronic Disease , Chagas Cardiomyopathy/immunology , Hypersensitivity, Delayed/immunology , Mice, Inbred BALB C , Parasitemia/drug therapy , Parasitemia/immunology , Skin Tests
SELECTION OF CITATIONS
SEARCH DETAIL